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Abstract

By differentiating a remainder formula of Stancu, we derive both an error bound and an asymptotic
formula for the derivatives of Bernstein approximation.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Bernstein approximation; Divided difference; Asymptotic formula; Error bound

1. Introduction

The Bernstein approximationBn(f ) to a functionf : [0, 1] → R is the polynomial

Bnf (x) =
n∑

i=0

f

(
i

n

)
pn,i(x), (1.1)

wherepn,i is the polynomial of degreen,

pn,i(x) =
(

n

i

)
xi(1− x)n−i , i = 0, . . . , n.
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Bernstein[1] used this approximation to give the first constructive proof of the Weier-
strass theorem. One of the many remarkable properties of Bernstein approximation is that
derivatives ofBn(f ) of any order converge to corresponding derivatives off ; see Lorentz
[7]. If f ∈ Ck[0, 1] for anyk�0, then

lim
n→∞ (Bnf )(k) = f (k) uniformly on[0, 1].

Other remarkable properties are shape-preservation and variation-diminution[5].
Thesemany properties can be viewedas compensation for the slow convergence ofBn(f )

to f. With ‖ · ‖ the max norm on[0, 1], the error bound

|Bn(f, x) − f (x)|� 1

2n
x(1− x)‖f ′′‖, (1.2)

given inChapter 10of[4], shows that the rate of convergence is at least 1/nforf ∈ C2[0, 1].
On the other hand, the asymptotic formula

lim
n→∞ n

(
Bnf (x) − f (x)

) = 1
2x(1− x)f ′′(x), (1.3)

due toVoronovskaya[9], shows that forx ∈ (0, 1)with f ′′(x) = 0, the rate of convergence
is precisely 1/n.
In this note we show that all derivatives of the operatorBn converge at essentially the

same rate by extending both the error bound (1.2) and the Voronovskaya formula (1.3).
Firstly, the error bound generalizes to:

Theorem 1. If f ∈ Ck+2[0, 1] for somek�0 then

|(Bnf )(k)(x) − f (k)(x)| � 1

2n

(
k(k − 1)‖f(k)‖ + k|1− 2x|‖f (k+1)‖

+x(1− x)‖f (k+2)‖
)

.

Secondly, Voronovskaya’s formula can be ‘differentiated’:

Theorem 2. If f ∈ Ck+2[0, 1] for somek�0, then

lim
n→∞ n

(
(Bnf )(k)(x) − f (k)(x)

) = 1

2

dk

dxk

{
x(1− x)f ′′(x)

}
,

uniformly forx ∈ [0, 1].

Thus thekth derivative ofBn(f ) converges at the rate of 1/nwhen thekth derivative of
x(1− x)f ′′(x) is non-zero.
We remark that after completion of this note, it was found that López–Moreno,Martínez–

Moreno, and Muñoz–Delgado[6] very recently established Theorem 2 using a completely
different approach.
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2. Stancu’s remainder formula

The traditional way to analyze the errorBn(f ) − f and indeed to derive both (1.2) and
(1.3) is to substitute the Taylor expansion

f

(
i

n

)
= f (x) +

(
i

n
− x

)
f ′(x) + · · ·

into Eq. (1.1). To deal with derivatives ofBn wewill instead borrow an idea from numerical
differentiation[2]. As is well known, error formulas for numerical differentiation can be
obtained from differentiating Newton’s remainder formula for polynomial interpolation.
This suggests finding an analogous remainder formula for Bernstein approximation and
subsequently differentiating it. A natural remainder formula for this purpose is

Bnf (x) − f (x) = 1

n
x(1− x)

n−1∑
i=0

([
i

n
,
i + 1

n
, x

]
f

)
pn−1,i(x). (2.1)

Here[x0, x1, . . . , xk]f denotes thekth order divided difference off at the pointsx0, . . . , xk,
and we note that the right hand side of (2.1) is valid at least forf in C2[0, 1].
A more general form of this formula for the remainder in tensor-product bivariate Bern-

stein approximation was derived by Stancu[8], but does not appear to be too well known.
It therefore seems worth offering the following proof, especially as it is shorter than the
original in [8]. If one recalls the identity

1

n
x(1− x)p′

n,i(x) =
(

i

n
− x

)
pn,i(x),

given in Chapter 10 of[4], Stancu’s formula follows simply from

Bnf (x) − f (x) =
n∑

i=0

(
f

(
i

n

)
− f (x)

)
pn,i(x)

=
n∑

i=0

[
i

n
, x

]
f

(
i

n
− x

)
pn,i(x)

= 1

n
x(1− x)

n∑
i=0

([
i

n
, x

]
f

)
p′

n,i(x)

= x(1− x)

n−1∑
i=0

([
i + 1

n
, x

]
f −

[
i

n
, x

]
f

)
pn−1,i(x).

3. Error analysis

In what follows it will help to generalize the operatorBn to

Bn,s,tf (x) =
n−s∑
i=0





 i

n
, . . . ,

i + s

n
, x, . . . , x︸ ︷︷ ︸

t


 f


 pn−s,i (x), (3.1)
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for anys, t �0. We haveBn,0,0 = Bn and the remainder formula (2.1) can be written as

Bnf (x) − f (x) = 1

n
x(1− x)Bn,1,1f (x).

Differentiating thisk times and using the Leibniz rule gives

(Bnf )(k)(x) − f (k)(x) = 1

n

(
−k(k − 1)(Bn,1,1f )(k−2)(x) + k(1− 2x)

×(Bn,1,1f )(k−1)(x) + x(1− x)(Bn,1,1f )(k)(x)
)

. (3.2)

This leads us to study the derivatives ofBn,1,1f .

Lemma 1. If f ∈ Cr+2[0, 1] for somer �0 then

(Bn,1,1f )(r) = r!
r+1∑
j=1

j
n − 1

n
· · · n − j + 1

n
Bn,j,r−j+2f.

Proof. Using the formula (see Chapter 2 of[2])

dr

dxr

[
i

n
,
i + 1

n
, x

]
f = r!


 i

n
,
i + 1

n
, x, . . . , x︸ ︷︷ ︸

r+1


 f,

differentiation of (3.1) withs = t = 1 implies

(Bn,1,1f )(r)(x) =
n−1∑
i=0

r∑
j=0

(
r

j

)
(r − j)!





 i

n
,
i + 1

n
, x, . . . , x︸ ︷︷ ︸

r−j+1


 f


 p

(j)
n−1,i(x)

= r!
r∑

j=0

(n − 1) . . . (n− j)

j !
n−j−1∑

i=0


�j


i

n
,
i + 1

n
, x, . . . , x︸ ︷︷ ︸

r−j+1


 f




×pn−j−1,i(x), (3.3)

where� is the forward difference operator w.r.t.i. Now notice that

�
[

i

n
,
i + 1

n
, x, . . . , x

]
f =

[
i + 1

n
,
i + 2

n
, x, . . . , x

]
f −

[
i

n
,
i + 1

n
, x, . . . , x

]
f

= 2

n

[
i

n
,
i + 1

n
,
i + 2

n
, x, . . . , x

]
f

and continuing to apply� implies

�j

[
i

n
,
i + 1

n
, x, . . . , x

]
f = 2 . 3 . . . (j + 1)

nj

[
i

n
, . . . ,

i + j + 1

n
, x, . . . , x

]
f.

Substituting this identity into Eq. (3.3) and replacingj by j − 1 gives the result. �
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Due to Lemma 1, we have forf ∈ Cr+2[0, 1] andr �0,

‖(Bn,1,1f )(r)‖�r!
r+1∑
j=1

j
‖f (r+2)‖
(r + 2)! = 1

2
‖f (r+2)‖.

Theorem 1 now follows from applying this bound to Eq. (3.2). To prove Theorem 2 we
study the convergence of the operatorsBn,s,t .

Lemma 2. If f ∈ Cs+t [0, 1] for somes, t �0 then

lim
n→∞ Bn,s,tf = f (s+t)

(s + t)! uniformly on[0, 1].

Proof. WeextendDavis’s proof of Bernstein’s theorem, namely the proof of Theorem 6.2.2
of [3]. Let q := s + t . Then for eachi, 0� i�n− s, there is some�i in the smallest interval
containingx, i/n, . . . , (i + s)/n such that

 i

n
, . . . ,

i + s

n
, x, . . . , x︸ ︷︷ ︸

t


 f = f (q)(�i )

q!

and it is sufficient to show that

Sn :=
n−s∑
i=0

(f (q)(�i ) − f (q)(x))pn−s,i (x) → 0.

Let� > 0.Sincef ∈ Cq [0, 1],∃� > 0 such that|y−x| < � implies|f (q)(y)−f (q)(x)| < �.
Let In be the set of alli, 0� i�n − s, for whichx − � < i/n < (i + s)/n < x + �, and
split Sn into the two terms

Cn =
∑
i∈In

(f (q)(�i ) − f (q)(x))pn−s,i (x),

Dn =
∑
i ∈In

(f (q)(�i ) − f (q)(x))pn−s,i (x).

Now for i ∈ In we clearly have|�i − x| < �, and so

|Cn|�
∑
i∈In

�pn−s,i (x)��.

RegardingDn, notice that∣∣∣∣ i

n
− x

∣∣∣∣ �
∣∣∣∣ i

n − s
− x

∣∣∣∣ +
∣∣∣∣ i

n
− i

n − s

∣∣∣∣ �
∣∣∣∣ i

n − s
− x

∣∣∣∣ + s

n

and similarly∣∣∣∣ i + s

n
− x

∣∣∣∣ �
∣∣∣∣ i

n − s
− x

∣∣∣∣ +
∣∣∣∣ i + s

n
− i

n − s

∣∣∣∣ �
∣∣∣∣ i

n − s
− x

∣∣∣∣ + s

n
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and therefore

max

{∣∣∣∣ i

n
− x

∣∣∣∣2 ,

∣∣∣∣ i + s

n
− x

∣∣∣∣2
}

�
(

i

n − s
− x

)2

+ O(1/n),

uniformly for x ∈ [0, 1]. It follows that

|Dn| � 2

�2
‖f (q)‖

∑
i ∈In

max

{∣∣∣∣ i

n
− x

∣∣∣∣2 ,

∣∣∣∣ i + s

n
− x

∣∣∣∣2
}

pn−s,i (x)

� 2

�2
‖f (q)‖

n−s∑
i=0

(
i

n − s
− x

)2

pn−s,i (x) + O(1/n)

= 2

(n − s)�2
‖f (q)‖x(1− x) + O(1/n).

Thus limn→∞ |Sn|�� for any� > 0. �

Due to Lemmas 1 and 2, we have forf ∈ Cr+2[0, 1] andr �0,

lim
n→∞(Bn,1,1f )(r) = r!

r+1∑
j=1

j
f (r+2)

(r + 2)! = f (r+2)

2
uniformly on[0, 1],

and Theorem 2 follows from multiplying Eq. (3.2) byn and lettingn → ∞.
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